Investigation and Best Management Practice (BMP) Evaluation and Development Memorandum for

O'Ryan Seep, Pharaoh Seep, and Dugout Creek, Howard and Mitchell Counties, Texas

Prepared for:

Prepared by:

INTERA Incorporated 1812 Centre Creek Drive, Suite 300 Austin, Texas 78754

August 2007

Investigation and BMP Evaluation and Development Memorandum for O'Ryan Seep, Pharaoh Seep, and Dugout Creek

Howard and Mitchell Counties, Texas

The information in this report was prepared under my supervision. The information is accurate and correct to the best of my knowledge. The information, data, and figures should not be used for purposes other than as elements of this overall report.

Richard Scadden, P.E.

Senior Engineer

This report is sealed in accordance with the provisions of the Texas Geoscience Practice Act. The validity and integrity of this report, including all maps, figures, diagrams or boring logs, will remain intact as long as the report is reproduced in full and accompanied by this title page and the associated geoscientist seal(s).

Noreen Baker, P.G.

Senior Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION	.1 .1
2.0	 TASK 1 – MONITORING WELL INSTALLATION AND SAMPLING 2.1 Analytical Results	. 1 . 2 . 3 . 3
3.0	TASK 2 – OPTION EVALUATION AND BMP DEVELOPMENT	. 3
4.0	REFERENCES	. 4

TABLES

Table 1	Groundwater Analytical Results
Table 2	Soil Analytical Results

FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well Location Map

APPENDICES

Appendix A	Boring Logs
Appendix B	Monitoring Well Construction Diagrams
Appendix C	Laboratory Data Package and Data Usability Review
Appendix D	BMP Evaluation - Crespo Consulting Services, Inc.

1.0 INTRODUCTION

INTERA Incorporated (INTERA) was contracted by the Railroad Commission of Texas (RRC) to provide professional environmental engineering services at oil and gas industry exploration and production sites and associated facilities across the State of Texas. Under this contract, INTERA has been tasked with performance of an environmental assessment at Dugout Creek in Howard and Mitchell Counties, Texas. Dugout Creek is located east of Coahoma, Texas and south of Interstate 20 (Figure 1). The goal of the investigation is to better understand the saltwater impact in Dugout Creek for the purpose of determining the most effective method to reduce the salinity load to the Colorado River. Best Management Practices (BMPs) are being developed with the assistance of Crespo Consulting Services, Incorporated (Crespo) to manage the impacted runoff, and the installation of surface water containment structures is being considered. Data generated from the installation and sampling of the three monitoring wells will be used in support of any remedial design to help focus the BMP evaluation and development.

1.1 Background

INTERA has performed environmental assessments at the O'Ryan and Pharaoh Saltwater Seeps to delineate the extent of salt-impacted groundwater at these seeps and to determine the source of the saltwater contamination. The results of these assessments have been documented in several reports (DE&S 2001a, DE&S 2001b, INTERA 2002a, INTERA 2002b, INTERA 2003a, INTERA 2006a, and INTERA 2006b). In addition, initial assessment activities were conducted along Dugout Creek in 2006, the results of which are documented in the August 2006 report, Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas (INTERA 2006c). INTERA understands that the RRC would like to determine if the flow of saltwater from O'Ryan and Pharaoh seeps or any other surface or subsurface seepage and drainage has impacted Dugout Creek, and how best to mitigate and manage any potential negative impact from the seeps.

1.2 Objectives

The objectives of this investigation and evaluation report are twofold: 1) to further investigate potential sources of chloride contamination, aiding in the focus of any future mitigation strategies, and 2) to evaluate and develop best management practices to mitigate and manage saltwater impacts from O'Ryan Seep, Pharaoh Seep, or any other source along Dugout Creek. The overall objective is to reduce the salinity load to the Colorado River. In order to achieve this goal, the RRC has requested that INTERA evaluate mitigation and management options and develop BMPs for the seeps. INTERA has achieved this through review of the existing data, collection of additional data and consideration of options for mitigation and control.

2.0 TASK 1 – MONITORING WELL INSTALLATION AND SAMPLING

During a recent field event (August 15th-18th, 2007), INTERA installed three monitoring wells in the vicinity of the Dugout Creek and Pharaoh and O'Ryan Seeps (Figure 2). After installation the well locations were surveyed using a sub-meter GPS unit. Monitoring well MW-07-1 was installed approximately 75 feet north of the Citation 71 production-water injection well. In the March 2006 investigation, chloride concentrations in excess of 16,000 parts per million were measured in MW-21. From the limited potentiometric data collected in the northwest portion of the O'Ryan Seep area, INTERA located MW-07-1 north of Citation 71 for the purposes of providing upgradient information. This well was installed to determine if chloride contributions from sources other than Citation 71 exist in the area. Refer to Appendix A and B for boring logs and monitoring well construction diagrams, respectively.

Monitoring well MW-07-2 was installed approximately 730 feet up the O'Ryan Seep drainage channel from the confluence of the O'Ryan Seep channel and Dugout Creek (this well was not installed closer to the confluence due to the presence of a pipeline of unknown size and orientation and numerous blocks of concrete that made access difficult). Monitoring well MW-07-3 was installed approximately 154 feet up the Pharaoh Seep drainage channel from the confluence of the Pharaoh Seep channel and Dugout Creek. Both of these wells were installed to investigate groundwater in this area and to determine the chloride concentration immediately upgradient/up-channel of the confluence of each channel with Dugout Creek.

The working hypothesis for the process by which chloride moves from the seeps to Dugout Creek in the absence of continuous surface water flow or groundwater flow is as follows. Groundwater-bearing alluvium is limited in the channels to the area just downstream of the seeps and to the area just up-channel of the confluences with Dugout Creek. Groundwater in the alluvium just downgradient of the seeps receives chloride-contaminated recharge directly from the seeps. As the groundwater moves downgradient through the alluvium it becomes concentrated as water is removed through evapotranspiration (i.e. at MW-7). Evapotranspiration not only works to concentrate chloride in the groundwater, but as the process continues, the chlorideladen groundwater is drawn to the surface where the water evaporates and chloride salts are left behind on the soil surface. The chloride salt deposits on the soil surface are then available to be dissolved and carried downstream by surface water during precipitation events. Depending on the amount of surface water runoff, the chloride may be carried all the way to Dugout Creek or only down the channel until the surface water dries up and the process starts again. In this way, chloride would migrate in slugs down the channel until reaching the alluvium just upstream of the confluence where it may be returned to groundwater in the alluvium and then move on into Dugout Creek. If this hypothesis is correct, groundwater in MW-07-2 and MW-07-3 should exhibit elevated concentrations of chloride and will provide some indication as to the magnitude of the contribution of chloride from each seep to Dugout Creek.

The wells were developed and sampled for total dissolved solids and anion analyses, specifically chloride, bromide and sulfate, in accordance with the Project QAPP (RRC, 2007). Although a thin lens of saturated clayey sand was encountered in MW-07-2, groundwater did not enter the well and a sample was not obtained at this location.

2.1 Analytical Results

Groundwater analytical results from samples collected August 15th-18th, 2007 are presented in Table 1. The chloride concentration in MW-07-1 is elevated at 8,840 mg/L but is still well below the March 2006 concentration in MW-21 of 16,200 mg/L. The chloride concentration is very high in MW-07-03 at 38,800 mg/L, which supports the hypothesis described above and indicates that Pharaoh Seep is contributing a significant amount of chloride to Dugout Creek. Despite the lack of a groundwater sample from the O'Ryan Seep drainage channel upgradient of Dugout Creek, it is likely that similar chloride concentrations also exist in the alluvium in the O'Ryan Seep drainage channel immediately upgradient of its confluence with Dugout Creek. The laboratory data package from DHL Analytical along with a data usability review conducted by INTERA is included in Appendix C. The data usability review was conducted in accordance with the Project QAPP (RRC, 2007).

2.2 Waste Management

Soil cuttings from well installation and purge water from sampling was drummed separately and staged adjacent to each well location. The drums were labeled with the contents, date, and source of the materials. Composite soil cutting samples from each well location were submitted to the lab for chloride analysis. The cuttings were drummed pending the results of the chloride analyses. According to Project QAPP guidelines, the cuttings may be spread out at the site if they are below background levels; if they exceed background levels, the cuttings will need to be disposed of in a permitted landfill. Refer to Table 2 for waste characterization analytical results.

3.0 TASK 2 – OPTION EVALUATION AND BMP DEVELOPMENT

Once the additional analytical data was collected from the well installation and sampling activities, that data was used to help focus the BMPs that may be used to manage the chloride impacts to Dugout Creek and downstream. Crespo has provided INTERA with a BMP evaluation of the Dugout Creek project site, included in Appendix D. Crespo has provided a list of possible BMPs that can now be used as discussion points for INTERA and RRC moving forward with implementation of a remedy. Meetings including Crespo, INTERA and RRC will be required to determine scope of work and budgetary restraints on the project. The team will work to refine the site conceptual model and to define the

process for which additional data needed for the design will be collected for final BMP implementation.

4.0 REFERENCES

DE&S 2001a. Environmental Assessment Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2001.

DE&S 2001b. Environmental Assessment Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2001.

INTERA 2002a. Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2002.

INTERA 2002b. Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2002.

INTERA 2003a. Second Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2003.

INTERA 2006a. Third Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006b. Second Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006c. Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas. August 2006.

RCC, 2007. Investigations and Abatement of Produced Water Impacts and Seeps to Surface Water in the Upper Colorado River Basin Upstream of Spence Reservoir (Segment 1411) Quality Assurance Project Plan. Prepared for the Railroad Commission of Texas Oil and Gas Division. Effective Period: July 2007 to May 2008. Tables

Sample ID	Collection Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (TDS) (mg/L)
MW-07-1	8/18/2007	58	8840	586	19000
MW-07-2		dry	dry	dry	dry
MW-07-3	8/17/2007	112	38800	3760	62800
MW-07-4	8/17/2007	114	38700	3820	63100

Table 1. Groundwater Analytical Results

MW-07-4 = Replicate Sample

Sample ID	Collection Date	Chloride (mg/kg-dry)
MW-07-1-S	8/17/2007	582
MW-07-2-S	8/16/2007	591
MW-07-3-S	8/15/2007	4860

 Table 2. Waste Characterization Analytical Results for Soil Cuttings

Figures

Appendix A

Boring Logs

INTERA INCORPORATED 1812 Centre Creek Dr., Suite 300					B	BORING NO: MW-07-1					
			A	ustin, TX 78754			ON: H	IOWAI	JT CR RD / M	EEK IITCHELL COUNTIES, TX sheet: 1 of 3	
DAT	E:			8/20/2007	NC	DRTH	ING:		١	N/A	
DRII	LER AND	COMF	ANY:	Oscar Garcia - JEDI	EA	STIN	IG:		١	N/A	
LOG	GED BY:			S. Pierson	EL	EVA ⁻	TION:		١	N/A	
DRII	LING EQU	JIPMEI	NT:	CME 75	ТС	DTAL	DEPT	H:	3	31.5 ft.	
DRII	LING ME	THOD:		Hollow Stem Auger / Air Rotary (switch @ 9')	SA	MPL	ING M	ETHO	D: 8	Split Spoon	
DEPTH IN FEET (BLS)	SYMBOL	nscs	MATERIAL CHANGE DEPTH	STRATUM DESCRIPTION		SAMPLE INTER.	SAMPLE NO.	RECOVERY %	FIELD SCREENING	SURFACE CONDITIONS: grass, other vegetation DATE 8/16/07 REMARKS DRILLING START TIME TIME TIME TIME TIME TIME TIME TIME ATE 8/16/07	
1 -				SAND, fine grained, light brown, dry, very loose, subrounded, poorly sorted.				50%			
2 -				SAND, fine grained, dark brown, damp, very loose, subrounded, poorly sorted							
3 +			3	becoming orange				80%			
			3.5	becoming tan, silty							
4 -								25%			
6-				SAND silty light tan fine grained subrounded							
7-				loose, very slightly damp				80%			
8-				becoming cemented							
9				Tan SAND							
11 -											
12⊥ 	<u>nanalaised</u>		<u> </u>	1	L	<u> </u>	I	I	I	1	

	E		IN 11 A	ITERA INCORPORATED 812 Centre Creek Dr., Suite 300 ustin, TX 78754	PR					EEK
DAT	<u> </u>			8/20/2007			ING:			N/A
DRILLER AND COMPANY: Oscar Garcia - JEDI						ASTIN	IG:		1	N/A
LOG	GED BY:			S. Pierson	EL	EVA	TION:		1	N/A
DRII		UIPME	NT:	CME 75	т	DTAL	DEPT	H:	;	31.5 ft.
DRII	LING ME	THOD:		Hollow Stem Auger / Air Rotary (switch @ 9')	SA	AMPL	ING M	IETHO	D: \$	Split Spoon
CDEPTH IN FEET (BLS)	SYMBOL	NSCS	MATERIAL CHANGE DEPTH	STRATUM DESCRIPTION		SAMPLE INTER.	SAMPLE NO.	RECOVERY %	FIELD SCREENING	SURFACE CONDITIONS: grass, other vegetation REMARKS DRILLING START FINISH TIME 1430 DATE 8/16/07 REMARKS
12 13 14 14 15 16 17 18 19 20 21 22 23 23				becoming pinkish tan SAND, silty, very fine grained to coarse grained, orange, subrounded, damp, poorly sorted						
24⊥	<u>1 (2.1249</u> 235)	L	<u>I</u>	1	_1		<u>I</u>	1	<u>I</u>	1

INTERA INCORPORATED 1812 Centre Creek Dr., Suite 300 Austin, TX 78754						BORING NO: MW-07-1							
		1	A	ustin, 1X /8/54	LO	CATI	ON: H	IOWA	RD / M	ITCHELL COUNTIES, TX	sheet:	3 of 3	
							NORTHING: N/A						
		CONF	ANT.			ASTIN	IG:		r	N/A			
			<u>лт.</u>			EVA	HON:		ſ	N/A			
			NI.			DIAL	DEPT	H:	_	31.5 ft.			
			Τ	Hollow Stem Auger / Air Rotary (Switch @ 9)	S/		ING M		D: 5		DRI	LING	
	oL	S	IAL VEPTI			NTER	ġ	۲۶ %	ING	CONDITIONS:	START TIME		
BLS (BLS	YMB	nsc	ATER IGE D	STRATUM DESCRIPTION			APLE	OVEF	FIELD	grass, other vegetation	DATE	2015 DATE	
DEPI	S		CHAN			SAMF	SAN	REC	SC	REMARK	8/16/07	8/16/07	
25 26 27 28 29 30 31													
32-	<u>, * 121, 21, 43, 53, 53</u> , 53 			EOB @ 31.5 ft						Switch to Hollow Stem A ream out bit stuck down l 0830 8/17.	uger @ 3 nole. Finis	1.5' to shed @	
33 -													
34													
35													

INTERA INCORPORATED					В	BORING NO: MW-07-2						
			A	ustin, TX 78754	PR LO	OJE(CATI	OT: 1	DUGOU	JT CR RD / M	EEK ITCHELL COUNTIES, TX sheet: 1 of 2		
DAT	E:			8/20/2007	NC	NORTHING: N/A						
DRILLER AND COMPANY: Oscar Garcia - JEDI						EASTING: N/A						
LOG	GED BY:			S. Pierson	EL	EVA	TION:		١	I/A		
DRIL	LING EQU	JIPME	NT:	CME 75	т	DTAL	DEPT	H:	2	20 ft.		
DRIL	LING ME	THOD:		Hollow Stem Auger / Air Rotary (switch @ 9')	SA	AMPL	ING M	ETHO	D: 8	Split Spoon		
DEPTH IN FEET (BLS)	SYMBOL	NSCS	MATERIAL CHANGE DEPTH	STRATUM DESCRIPTION		SAMPLE INTER.	SAMPLE NO.	RECOVERY %	FIELD SCREENING	SURFACE CONDITIONS: dry creek bed, red dirt, surrounding vegetation = grass, mesquite, sunflowers BEMARKS		
2 + 3 +			0	CLAY, sandy (fine grain), red-orange, damp, medium stiff, slightly plastic, little organic content				50%		REMARKS		
5			5	4 inch bed of SAND, clayey, fine grained, red-orange, subrounded, well sorted, homogenous, loose				50%				
7-				CLAY and SAND, clay supported, red-orange, damp, fine grained, medium stiff, plastic				90%				
9-			8.8 9.2 9.7	CLAY, sandy (fine grained), red-orange, damp, medium stiff, slightly plastic, little organic content soft, wet soft, wet, 2 inches				100%				
				grained to medium grained, stiff, highly plastic				90%				

	INTERA INCORPORATED				В	BORING NO: MW-07-2						
			A	ustin, TX 78754	PR LO	PROJECT: DUGOUT CREEK LOCATION: HOWARD / MITCHELL COUNTIES, TX sheet: 2 of 2						
DAT	E:			8/20/2007	N	NORTHING: N/A						
DRILLER AND COMPANY: Oscar Garcia - JEDI						EASTING: N/A						
LOG	GED BY:			S. Pierson	EL	.EVA ⁻	TION:		١	I/A		
DRII	LING EQU	JIPMEI	NT:	CME 75	т	DTAL	DEPT	H:	2	20 ft.		
DRII	LLING ME	THOD:		Hollow Stem Auger / Air Rotary (switch @ 9')	SA	AMPL	ING M	ETHO	D: 8	Split Spoon		
DEPTH IN FEET (BLS)	SYMBOL	nscs	MATERIAL CHANGE DEPTH	STRATUM DESCRIPTION		SAMPLE INTER.	SAMPLE NO.	RECOVERY %	FIELD SCREENING	SURFACE DRILLING CONDITIONS: TIME TIME grass, other vegetation DATE DATE 8/16/07 8/16/07 REMARKS		
12			12.8 13.2	6 inches, SAND, clayey, medium grained, subrounded, well sorted, saturated				100%				
14-			13.0	CLAY, red and green motiled CLAY, red with some green mottling throughout, very dense, highly plastic								
15								100%				
16+				CLAY, red-orange, stiff, non-plastic, dry, slickensided								
17+								95%				
18				some mottling in last 4 inches	+							
19								60%				
20				EOB @ 20 ft				↓ ♥				
21-	-											
22												
23-												
24												

	ITERA INCORPORATED 812 Centre Creek Dr., Suite 300	BORING NO: MW-07-3					
		LOCATION: HOWARD / MITCHELL COUNTIES, TX sheet: 1 of 2					
LOCCED BY	S Discon	EASTING: N/A					
		ELEVATION: N/A					
DRILLING EQUIPMENT:		TOTAL DEPTH: 20 ft.					
	Hollow Stem Auger / Air Rotary (Switch @ 9)	SAMPLING METHOD: Split Spoon					
DEPTH IN FEE (BLS) (BLS) SYMBOL USCS MATERIAL CHANGE DEPT	STRATUM DESCRIPTION	Image: Solution of the sector of the sect					
ш <u>-</u> з з 4 5 6 7 8 8 9 10	CLAY, red-orange, very stiff, very plastic, homogenous	Image: constraint of the second se					

INTERA INCORPORATED			В	BORING NO: MW-07-3								
				ustin, TX 78754	PROJECT: DUGOUT CREEK LOCATION: HOWARD / MITCHELL COUNTIES, TX sheet: 2 of 2							
DAT	E:			8/20/2007	NC	ORTH	ING:		١	N/A		
DRI	LLER AND	COMF	ANY:	Oscar Garcia - JEDI	EA	STIN	IG:		١	N/A		
LOC	GED BY:			S. Pierson	EL	.EVA	TION:		١	I/A		
DRI	LLING EQI	JIPMEI	NT:	CME 75	т	DTAL	DEPT	H:	2	20 ft.		
DRI	LLING ME	THOD:		Hollow Stem Auger / Air Rotary (switch @ 9')	SA	AMPL	ING M	ETHO	D: 8	Split Spoon		
DEPTH IN FEET (BLS)	SYMBOL	NSCS	MATERIAL CHANGE DEPTH	STRATUM DESCRIPTION		SAMPLE INTER.	SAMPLE NO.	RECOVERY %	FIELD SCREENING	SURFACE CONDITIONS: dry creek channel, mud cracks, red dirt, surrounding Veg. = grass & mesquite REMARKS DRILLING TIME TIME 1634 1740 DATE 8/15/07 8/15/07		
12			0	CLAY, as above				100%				
14-			13.8	1 inch thick, softer, wet, becoming silty SAND, clayey, red-orange, fine grained to medium grained, subrounded, moist, dense, moderately sorted								
15								100%				
17-			17.5	same as above, fine grained same as above, coarse grained to pebbles, saturated				100%				
18 -				interbedded sandy CLAY with clayey SAND to pebbles, clay is moderately dense and wet, sand is coarse grained to pebbles and saturated, red-orange				100%				
20				EOB @ 20 ft								
21 -	-											
22 -												
24												

Appendix B

Monitoring Well Construction Diagrams

Project No. RR	C-DUG 02-01 Client:	Texas Railroad Commission	n Site: Dugout Creek	Well No. <u>MW-07-2</u>	5/07
Contractor:	Jedi	Method:	Hollow-Stem Auger	Date installed:	<u>, </u>
	b e cui	Merriou.			

MONITORING WELL CONSTRUCTION DETAIL

						Distance from GS (feet)	Elevation (AMSL)
Lock & Locking Cap —						4	N/A
				Top of Steel Guard Pipe			
Measuring Point for Surveying & Water Levels		'				26	NI/A
Vent Holes				Top of Casing			A
		Ш				0	NT/A
	TIE			<u>Ground Surfac</u> e (GS)			$\underline{N/A}$
		X		Bottom of Steel Guard I	Pipe	1	N/A
Concrete Pad				(tolion 9/17	(07) DDV	NT/A
N/A				Stabilized Water Level (taken 8/1/	(07) <u>DRY</u>	<u>_N/A</u>
<u> </u>				Bottom of Surface	Hole	N/A	N/A
Bentonite Slurry Grout				Casing:	12.6		
<u> </u>				Length Inside Diameter (ID)	<u>1.81 in</u>		
<u> </u>				Type of Material	PVC		
				Top of Seal		2	N/A
Seal:	-						
Type Bentonite chips .3/8 in	_						
Quantity 2.5 50 lb bags				Top of Filter Pack		8	N/A
				Bottom of Riser Pipe		10	NT/A
		=		Top of Screen			$\underline{N/A}$
		=					
				Screen:	10		
		Ē		Inside Diameter (ID)	1.81 in		
				Type of Material	PVC		
Filter Pack:	-	=					
Type/Size Silica sand	_	Ξ					
Quantity 4.5 50 lb bags	-	Ξ		Bottom of Screen/Casin	a	20	N/A
		Ξ			•		
		=				20.5	
		<u>= / / / / / / / / / / / / / / / / / / /</u>		Bottom of Borehole			<u>N/A</u>
INTED 1	Borehel		meter				
	oor anole		*	Describe Measuring Point	:		

Project No. <u>RRC-DUG 02-01</u> Client: <u>Texas Rail</u>	road Commission Site: <u>Dugout Creek</u>	Well No. <u>MW-07-3</u>
Well Location: Near confluence of Pharaoh Seep	p and Dugout Creek	Date Installed: <u>8/15/07</u>
Contractor:Jedi	Method: Hollow-Stem Auger	

MONITORING WELL CONSTRUCTION DETAIL

						Distance from GS (feet)	Elevation (AMSL)
Lock & Locking Cap —						4	N/A
		┓	1	Top of Steel Guard Pipe			
Measuring Point for Surveying & Water Levels		ľ				3.6	N/A
Vent Holes	*	-¶-		Top of Casing			
		4				0	N/A
				Ground Surface (GS)			<u> </u>
				Bottom of Steel Guard A	Pipe		N/A
Concrete Pad —					(taken 8/16	(07) 9.4	N/A
N/A surface series				Stabilized Water Level		///////////////////////////////////////	$\underline{\mathbf{N}}/\mathbf{A}$
Surface Casing				Bottom of Surface	Hole	_N/A_	N/A
Cement-Bentonite or							
Bentonite Slurry Grout				Casing:	13.6		
<u>N/A</u> % Bentonite				Inside Diameter (ID) Type of Material	1.81 in PVC		
Quantity				Type of material			
						_	
			-	Top of Seal			<u>N/A</u>
Type <u>Bentonite chips</u>							
<u>3/8 in</u> 2 50 lb bags	$-\blacksquare$					8	NI/A
quumiy				Top of Filter Pack			<u>IN/A</u>
				Bottom of Riser Pipe			
				Top of Screen		10	<u>N/A</u>
		Ξ					
				Screen:	10		
				Length Inside Diameter (ID)	<u>1.81 in</u>		
		3		Slot Size Type of Material	<u>0.10 in</u> <u>PVC</u>		
Elling Basin		Ξ					
Type/Size Silica sand		Ξ					
Quantity <u>5.5 50 lb</u> bags	-	Ξ		Bottom of Screen/Casin	n	20	N/A
		Ē		Series of Sereeny duality	9		
						a a <i>z</i>	
		=		Bottom of Borehole		20.5	<u>N/A</u>
INTED A	Borehele		neter				
IIILETA	porenole		*	Describe Measuring Point	:		
				West side of top of casin	g		

Appendix C

Laboratory Data Package and Data Usability Review

Upper Colorado River Basin Salt Water Seep and Drainage Investigation QAPP Above Spence Reservoir

 γ

Clie	nt/Project: Page at Creek Reviewer: BANBAA	4Lis	m Ek	Review Date: 8
ab	oratory: DHL Analytical Method:	(Ű.	Matrixe
Ŷò	ck Order No:: 0708171 5W846 2	PA	300	55/1-2110.0
	$\rightarrow TPS \mu 0.1$			Comments
μ	Poving Item or Question	Ves	No	(List Exceptions Explanations etc.
	who Decompation and Integrity			
4III 	Dil and integrity			
	preserved (e.g., 4°C, correct acid added to sample)?	-		
	Were holding times met?	V		
at	a Completeness			
	Are results reported for all target analytes, with no additional analytes?	/		
	Was the requested analytical method followed?	land		
	Do reported detection limits (or reporting limits/MDL) agree with the project specifications (QAPP)?		Barrison	Water sample RLs slevate due to diluti
	Are results reported for all samples submitted for analysis?	\checkmark		·.
ali	bration and QC Sample Frequency			
	Were initial and continuing instrument calibration analyses performed? And reported? ^a	V		
	For each analytical batch, are results provided for a method blank?	V		
	For each analytical batch, are results provided for an LCS/LCSD pair?			
0	For each analytical/preparation batch, are results provided for an MS/MSD pair? Alternately, are results for MS/MSD pairs provided for every 20 field samples analyzed?	1		
1	Are field duplicate results provided at the project- specified (QAPP) frequency?	V		

Table D2.1 Data Review Checklist

Upper Colorado River Basin Salt Water Seep and Drainage Investigation QAPP Above Spence Reservoir

Clie Lab Wo	nt/Project: Ducont Cul Reviewer: Baker oratory: DHL Analytical Method: rk Order No.: 0708171 SW 846 E1	11 <i>271</i> 124 - 3	Ki _{st} zo	Review Date: 8/29/ Matrix: Soil - 1 Not 1/
#	V TDS 160.1 Review Item or Question	Yes	No	Comments (List Exceptions, Explanations, etc.)
12	Organic Analyses Only: For each sample (field and QC), are surrogate spike results provided?			NA
QC	Results			
13	Do method blank results show no detectable concentrations of target analytes (i.e., results = ND)?	/		
14	Are LCS/LCSD recoveries and RPDs within limits?			
15	Are MS/MSD recoveries and RPDs within limits?	1	~	
16	Are surrogate recoveries within limits (organic analyses only)?		and the second second second	NA
Oth	er Data Quality-Related Issues			
17	The laboratory did not issue any CARs. If this is not true (a CAR was issued), describe impact on sample results.			No CARS ISSUED
18	The analyst did not describe any analytical anomalies. If this is not true, describe potential impact to sample results.	~	x .	
19	No other potential data quality issues were identified. If this is not true, describe issues.		1	labals on sample ids + bottles

Table D2.1 Data Review Checklist (continued)

^a The laboratory will not be required to report all calibration results. Data validation efforts for this project will assume that the laboratory performed the method-specified calibration analyses.

CAR = Corrective Action Report

LCS/LCSD = Laboratory Control Sample/Duplicate Laboratory Control Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

QAPP = Quality Assurance Project Plan

RPD = Relative Percent Difference

Further Comments:

* sampling team lead was contacted and confirmed lid are correct Dedicated Equipment used -no equipment blanks necessary

August 30, 2007

Daniel Krause INTERA Inc. 1812 Centre Creek Dr. #300 Austin, Texas 78754

TEL: (512) 425-2000 FAX: (512) 425-2099

RE: Dugout Creek Revision Number 1 for Work Order 0708171

Dear Daniel Krause,

DHL Analytical received 6 samples on 8/20/07 for the analyses presented in the following REVISED report. This revision consists of changing the report to a TRRP report. Please replace the original report with this revised report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these test results, please feel free to call. Thank you for using DHL Analytical.

Sincerely.

John Dupont General Manager

1

TABLE OF CONTENTS

This report for Intera, Inc.: Dugout Creek (DHL Work Order 0708171) contains the following information:

	ITEM	Page
٠	Cover Page	1
•	Table of Contents	2
•	Original chain of custody, FedEx slip (if used), log-in checklist	3-4
•	Data Package Signature Page	5
•	Laboratory Review Checklist	6-7
•	Case Narrative	8
•	Work Order Summary	9
•	Preparation Dates Report	10
٠	Analytical Dates Report	11
•	Sample Results	12-17
•	QC Summary Report	18-23
•	MQL Summary Report	24
•	Total Number of Pages	24

August 30, 2007

Approved: John DuPont

- 2

Nº 29786 CHAIN-OF-CUSTODY	DHL WORK ORDER #: DFD8/7-1 ME: 0 V&M CREEK. 01-01 COLLECTOR: DF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>X ZANLEAMPLES X ZANLOWS X J CHLORIDA</th> <th>X X VIIONS -7 X VIIONS -7 X VIIONS -7 X X VIIONS -7 X X VIIONS -7 X X X X X X X X X X X X X X X X X X X</th> <th>LABORATORY USE ONLY: RECEIVING TEMP. 5.3 C THERM #: 57 CUSTODY SEALS - 1 BROKEN II INTACT X NOT USED I CARRIER BILL # D CARRIER BILL #</th>	X ZANLEAMPLES X ZANLOWS X J CHLORIDA	X X VIIONS -7 X VIIONS -7 X VIIONS -7 X X VIIONS -7 X X VIIONS -7 X X X X X X X X X X X X X X X X X X X	LABORATORY USE ONLY: RECEIVING TEMP. 5.3 C THERM #: 57 CUSTODY SEALS - 1 BROKEN II INTACT X NOT USED I CARRIER BILL # D CARRIER BILL #
ole Creek Drive • Round Rock, TX 78664 2) 388-8222 • FAX (512) 388-8229	DATE A BATE: A B VITE A PO # PO # PO # 25-7677 PO # PROJECT LOCATION OR NAM 201 CLIENT PROJECT # PULLE	те те те те те те те те те те	427 X X 427 427 427 427 427 1		RECEIVED BY: (Signature) RECEIVED BY: (Signature) RUSH 244L FIRST RUSH 244L FIRST 1 DAY 3 CALL FIRST 2 DAY 3 RECEIVED BY: (Signature) RECEIVED BY
A N A L Y T I C A L Phone (512	CLIENT: INTERA INC. ADDRESS: 1512 CEMPE CROEK IR 5 PHONE: F25-2000 FAX 42 DATA REPORTED TO: 400 CONES TO: 000 CONES 100 CON	Authorize 5% S=SOIL P=PAINT Authorize 5% S=SOIL P=PAINT surcharge for W=WATER SL=SLUDGE TRRP report? A=AIR OT=OTHER Tyes T/No A=AIR OT=OTHER Field DHL DHL Date Sample 1.D. Lab # Date Time	MW-07-1-5018170120656.	MW-07-2 05 5-170 380 07- MW	TOTAL TOTAL RELINQUISHED BY: (Signature) CAME L WZAV5E RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME DATE/TIME DATE/TIME DATE/TIME

DHL Analytical

Sam	ple Receipt C	checklist		
Client Name INTERA Inc.		Date Rece	ived: 8/20/2007	
Work Order Number 0708171		Received b	y DU	
Checklist completed by: Signature 8.	<u>20.07</u> Date	Reviewed b	by (TD)	08/20/07 Date
Carrier nar	ne: <u>Hand Deliv</u>	ered		
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗔		
Chain of custody agrees with sample labels?	Yes 🗌	No 🗹		
Samples in proper container/bottle?	Yes 🗹	No 🗔		
Sample containers intact?	Yes 🗹	. No 🗆		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆		
All samples received within holding time?	Yes 🗹	No 🗆		
Container/Temp Blank temperature in compliance?	Yes 🗹			
Water - VOA vials have zero headspace?	Yes 🗌	No 🗆	No VOA vials submitted	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗆	Not Applicable 🗹	
Adjusted?		Checked by		

Any No response must be detailed in the comments section below.									
Client contacted TATERA Date contacted: 8.20.07 F	Person contacted Daniel Kause								
Contacted by: Debbiell. Regarding: Somple II	<u>Ds</u>								
comments: "lid ID = MWD7-2. label -	ID = MW - 07 - 1								
@ lid ID=MW-07-1 label	ID = MW - 07 - 2								
corrective Action Lid IDS are correct									
······································									

4

Laboratory Data Package Signature Page

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix;

R10 Other problems or anomalies.

The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

mature

Scott Schroeder – Project Manager John DuPont – General / QA Manager

5

DH	IL A	nalytical, Inc.								
Lal	bora	tory Review Checklist: Reportable Data								
Proj	ect Na	me: Dugout Creek Dat	te: 8130107							
Revi	ewer l	Name: Laura Flowers Lat	poratory Work Order: 0708171							
Prep	Batch	Number(s): See Prep Dates Report Run	n Batch: See Analytical Dates Report	·····						
#	A^2	Description		Yes	No	NA	NR ⁴	ER#5		
	1	Chain-of-Custody (C-O-C)								
R1	OI	1) Did samples meet the laboratory's standard conditions of san	nple acceptability upon receipt?		() 			R1-01		
	·	2) Were all departures from standard conditions described in an	exception report?	10	1					
R2	101	Sample and Quality Control (OC) Identification	······································							
	1	1) Are all field sample ID numbers cross-referenced to the labor	ratory ID numbers?		19220923075					
		2) Are all laboratory ID numbers cross-referenced to the corresp	ponding QC data?	7	1		1			
R 3	OI	Test Reports								
		1) Were all samples prepared and analyzed within holding times	s?	~	1					
		2) Other than those results < MQL, were all other raw values br	acketed by calibration standards?	1	ļ			ļ		
ł		3) Were calculations checked by a peer or supervisor?			ļ	<u> </u>	ļ			
		4) Were all analyte identifications checked by a peer or supervise	sor?	1	ļ	ļ	ļ			
		5) Were sample quantitation limits reported for all analytes not	detected?	Ľ	ļ	ļ				
	· ·	(6) Were all results for soil and sediment samples reported on a (dry weight basis?	-	<u> </u>	ļ	 			
		(7) were % moisture (or solids) reported for all soli and sedimen	it samples?	<u> </u>			<u> </u>			
D/		Surrogate Recovery Data								
1.4		1) Were surrogates added prior to extraction?					1			
		2) Were surrogate percent recoveries in all samples within the la	aboratory OC limits?		1	-	╆───			
R5	OT	Test Reports/Summary Forms for Blank Samples								
	101	1) Were appropriate type(s) of blanks analyzed?	· ·							
		2) Were blanks analyzed at the appropriate frequency?		~						
		3) Where method blanks taken through the entire analytical proc	cess, including preparation and, if				1			
		applicable, cleanup procedures?		-						
		4) Were blank concentrations < MQL?			-					
<u>R6</u>	OI	Laboratory Control Samples (LCS):								
		1) Were all COCs included in the LCS?		$ \leq $	<u> </u>	ļ	ļ			
		2) Was each LCS taken through the entire analytical procedure,	including prep and cleanup steps?	<u> </u>	 					
	1	3) were LCSs analyzed at the required frequency?				<u> </u>				
		4) were LCS (and LCSD, if applicable) for swithin the laboratory's capability data document the laboratory's capability	ity to detect the COCs at the MDL wood							
		to calculate the SQL s?	ity to detect the COCs at the MDE used	-						
	Ì	6) Was the LCSD RPD within OC limits (if applicable)?	· · · · ·	~						
R 7	IOI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data								
		1) Were the project/method specified analytes included in the M	IS and MSD?	-						
		2) Were MS/MSD analyzed at the appropriate frequency?		/						
		3) Were MS (and MSD, if applicable) %Rs within the laboratory	y QC limits?	/						
		4) Were MS/MSD RPDs within laboratory QC limits?								
<u>R8</u>	01	Analytical Duplicate Data								
		1) Were appropriate analytical duplicates analyzed for each matu	rix?	~						
		2) Were analytical duplicates analyzed at the appropriate frequence								
20	07	(3) Were RPDs or relative standard deviations within the laborate				100000000000000000000000000000000000000				
К9		INTERNOL QUARTITATION LIMITS (INIQLS):	tome data madra 2							
		1) Are the MOL s correspond to the concentration of the lawset τ	nui y uata package!	\rightarrow						
		3) Are unadjusted MOLs included in the laboratory data proclam	on-zero canoration standard /							
R10	01	Other Problems/Anomalies	···							
	~ ^	1) Are all known problems/anomalies/special conditions noted in	n this LRC and ER?		20703377	2227	107-1912			
		2) Were all necessary corrective actions performed for the report	ted data?	~						
		3) Was applicable and available technology used to lower the SC	L minimize the matrix interference							
		affects on the sample results?	-	_						

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; l = inorganic analyses (and general chemistry, when applicable). NA = Not applicable. 1

- 2 3
- 4 NR = Not Reviewed.

5 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

. . . .

DH	LA	nalytical, Inc.			+			
Lab	ora	tory Review Checklist (continued): Supporti	ng Data					
Project Name: Orgout Creek Date: 8/30/07								
Reviewer Name: Laura Flowers Laboratory Work Order: 070817								
H A ² Description				Yes	No	INA ³	NR ⁴	ER#
51		Initial Calibration (ICAL)						
<u> </u>	ļ							
ľ		1) Were response factors and/or relative response factors for each analyte within UC limits?						<u> </u>
		2) Were percent RSDs or correlation coefficient criteria met?				+		<u> </u>
		3) Was the number of standards recommended in the included used for all analytes?					·	
		4) Were all points generated between the lowest and highest standard used to calculate the curve?				+		
		5) Are ILAL data available for all instruments used?						
01	07	(b) Has the limital calibration curve been vernied using all appre-	CCV and Continuing Calibratian					
52		blank (CCB):						
		1) Was the CCV analyzed at the method-required frequency?		14	<u> </u>			
	2) Were percent differences for each analyte within the method-required QC limits?		I-required QC limits?		<u> </u>	+		
		3) Was the ICAL curve verified for each analyte?		\vdash				
		4) Was the absolute value of the analyte concentration in the inorganic CCB < MDL?						
<u>S3</u>	0	Mass Spectral Tuning:					1	1
		1) Was the appropriate compound for the method used for tuning?			+	÷		
		2) Were ion abundance data within the method-required QC limits?						
S4 O Internal Standards (IS):		Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-required QC limits?						
55	01	Raw Data (NELAC section 1 appendix A glossary, and section 5.12)						
	1	1) were the raw data (for example, chromatograms, spectral da	ta) reviewed by an analyst?	×		+		
00		2) were data associated with manual integrations hagged on the raw data?						
30	0	1) Did dual column confirmation results meet the method required OC?						
67	0	Tentatively Identified Compounds (TICs):						
0/	<u>v</u>	1) If TICs were requested were the mass spectra and TIC data subject to appropriate checks?						
68	1	Interference Check Sample (ICS) Results:						
50	1	1) Were percent recoveries within method OC limits?					Treese and the second second	
50	Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions		dard Additions					
		1) Were percent differences, recoveries, and the linearity within the QC limits specified in the						
		method?		ł		· /		
010		Marked Date attend Theory (MDT) Charles						
<u>SI0 OI</u>		Method Detection Limit (MDL) Studies						1
<u> </u>		2) Is the MDL sittler adjusted or supported by the applysis of D						
S11		Proficiancy Test Reports:						
011	<u> 01</u>	1) Was the lab's performance acceptable on the applicable prof	iciency tests or evaluation studies?					
\$12		Standards Documentation						
312 01		1) Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?		<u></u>				Service and a service and
\$13	or	Compound/Analyte Identification Procedures					11.198	
		1) Are the procedures for compound/analyte identification documented?		V				
S14	or	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5C?	······································					
		2) Is documentation of the analyst's competency up-to-date and on file?		1				
S15	OJ	Verification/Validation Documentation for Methods (NELAC Chap 5)						
		1) Are all the methods used to generate the data documented, verified, and validated, v		./		1		
		applicable?		ľ	1	1		
\$14		Laboratory Standard Oneroting Presedures (SOBs).						
ULC.		1) Are laboratory SOPs current and on file for each method per	formed?			BASSAGASSAG	4245400	
		ay is a monutory over a carrent and on monor cash mothod por						

· •

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

O = organic analyses;
 NA = Not applicable.

4 NR = Not Reviewed.

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

DHL Analytical

Date: 30-Aug-07

CLIENT:	INTERA Inc.
Project:	Dugout Creek
Lab Order:	0708171

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW9056 - Anions by IC Method Method E300 - Anions Analysis Method E160.1 - TDS Analysis Method D2216 - Percent Moisture (Parameter Not NELAC Certified)

Exception Report R1-01

Samples were received and log-in performed on 8/20/07. A total of 6 samples were received. The samples arrived in good condition and were properly packaged. There were a couple discrepancies with the sample IDs between the sample lids and the sample container labels. The correct sample IDs are on the sample lids as per client.
DHL Analytical

CLIENT: Project: Lab Order:	INTERA Inc. Dugout Creek 0708171		Work Order Sample	Summary
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
0708171-01	MW-07-1-S		08/17/07 08:15 PM	8/20/2007
0708171-02	MW-07-2-S		08/16/07 10:45 AM	8/20/2007
0708171-03	MW-07-3-S		08/15/07 05:35 PM	8/20/2007
0708171-04	MW-07-1		08/18/07 07:50 AM	8/20/2007
0708171-05	MW-07-3		08/17/07 08:05 AM	8/20/2007
0708171-06	MW-07-4		08/16/07 12:10 PM	8/20/2007

^{...}9.

.

DHL Analytical

30-Aug-07

Lab Order:	0708.171						
Client:	INTERA Inc.				PREP	DATES REPOI	ZT
Project:	Dugout Creek						
Sample ID	Client Sample JD	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
0708171-01A	S-1-70-WM	08/17/07 08:15 PM	Soil	SW9056	Anion Prep	08/21/07 01:32 PM	26958
	MW-07-1-S	08/17/07 08:15 PM	Soil	D2216	Percent Moisture	08/21/07 03:50 PM	PMOIST 070821C
0708171-02A	MW-07-2-S	08/16/07 10:45 AM	Soil	SW9056	Anion Prep	08/21/07 01:32 PM	26958
	MW-07-2-S	08/16/07 10:45 AM	Soil	SW9056	Anion Prep	08/21/07 01:32 PM	26958
	MW-07-2-S	08/16/07 10:45 AM	Soil	D2216	Percent Moisture	08/21/07 03:50 PM	PMOIST 070821C
07081.71-03A	MW-07-3-S	08/15/07 05:35 PM	Soil	SW9056	Anion Prep	08/21/07 01:32 PM	26958
	MW-07-3-S	08/15/07 05:35 PM	Soil	D2216	Percent Moisture	08/21/07 03:50 PM	PMOIST 070821C
0708171-04A	I-70-WM	08/18/07 07:50 AM	Aqueous	E300	Anions by JC method - Water	08/21/07	R33218
	MW-07-1	08/18/07 07:50 AM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
	MW-07-1	08/18/07 07:50 AM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
	MW-07-1	08/18/07 07:50 AM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
0708171-04B	1-70-WM	08/18/07 07:50 AM	Aqueous	M2540C	Total Dissolved Solids	08/22/07	TDS_W-08/22/07
0708171-05A	MW-07-3	08/17/07 08:05 AM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
	MW-07-3	08/17/07 08:05 AM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
	MW-07-3	08/17/07 08:05 AM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
0708171-05B	MW-07-3	08/17/07 08:05 AM	Aqueous	M2540C	Total Dissolved Solids	08/22/07	TDS_W-08/22/07
0708171-06A	MW-07-4	08/16/07 12:10 PM	Aqueous	E300	Auions by IC method - Water	08/21/07	R33218
	MW-07-4	08/16/07 12:10 PM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
	MW-07-4	08/16/07 12:10 PM	Aqueous	E300	Anions by IC method - Water	08/21/07	R33218
0708171-06B	MW-07-4	08/16/07 12:10 PM	Aqueous	M2540C	Total Dissolved Solids	08/22/07	TDS_W-08/22/07

Page 1 of 1

30-Aug-07

DHL Analytical

Lab Order: Client: Project:	0708:171 INTERA Inc. Dugout Creek				ANALY		AL DATES R	EPORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID Di	lution	Analysis Date	Run ID
0708171-01A	MW-07-1-S	Soil	SW9056	Anions by IC method - Soil	26958	5	08/23/07 12:30 PM	IC2.070823A
	MW-07-1-S	Soil	D2216	Percent Moisture	PMOIST_070821C		08/22/07 09:40 AM	PMOIST 070821C
0708171-02A	MW-07-2-S	Soil	SW9056	Anions by IC method - Soil	26958	20	08/23/07 12:00 PM	IC2 070823A
	MW-07-2-S	Soil	SW9056	Anions by IC method - Soil	26958	5	08/23/07 05:24 PM	 IC2_070823A
	MW-07-2-S	Soil	D2216	Percent Moisture	PMOIST_070821C		08/22/07 09:40 AM	PMOIST 070821C
0708171-03A	MW-07-3-S	Soil	SW9056	Anions by IC method - Soil	26958	20	08/23/07 12:15 PM	IC2 070823A
	MW-07-3-S	Soil	D2216	Percent Moisture	PMOIST 070821C		08/22/07 09:40 AM	PMOIST 070821C
0708171-04A	I-70-WM	Aqueous	E300	Anions by IC method - Water	- R33218	2	08/21/07 06:05 PM	IC2 070821A
	MW-07-1	Aqueous	E300	Anions by IC method - Water	R33218	500	08/21/07 03:51 PM	- IC2 070821A
	MW-07-1	Aqueous	E300	Anions by IC method - Water	R33218	200	08/21/07 05:51 PM	- IC2_070821A
	MW-07-1	Aqueous	E300	Anions by IC method - Water	R33218	100	08/21/07 04:36 PM	IC2_070821A
)708171-04B	MW-07-1	Aqueous	M2540C	Total Dissolved Solids	TDS_W-08/22/07	Г	08/22/07 09:00 AM	WC_070822D
0708171-05A	MW-07-3	Aqueous	E300	Anions by IC method - Water	R33218	500	08/21/07 04:05 PM	IC2_070821A
	MW-07-3	Aqueous	E300	Anious by IC method - Water	R33218	1000	08/21/07 04:51 PM	IC2 070821 A
	MW-07-3	Aqueous	E300	Anions by IC method - Water	R33218	50	08/21/07 06:20 PM	IC2 070821A
J708171-05B	MW-07-3	Aqueous	M2540C	Total Dissolved Solids	TDS_W-08/22/07	1	08/22/07 09:00 AM	- WC 070822D
)708171-06A	MW-07-4	Aqueous	E300	Anions by IC method - Water	R33218	500	08/21/07 04:20 PM	IC2_070\$21A
	MW-07-4	Aqueous	E300	Anions by IC method - Water	R33218	1000	08/21/07 05:36 PM	IC2_070821A
	MW-07-4	Aqueous	E300	Anions by IC method - Water	R33218	50	08/21/07 06:35 PM	IC2_070821A
J708171-06B	MW-07-4	Aqueous	M2540C	Total Dissolved Solids	TDS_W-08/22/07	1	08/22/07 09:00 AM	WC_070822D

Page 1 of 1

~

DHL Ana	lytical				D	ate:	30-Aı	ıg-07
CLIENT:	INTERA Inc.		kulana		Client	Sample ID:	MW-	07-1-S
Project:	Dugout Creek			•		Lab ID:	07081	171-01
Project No:	RRC-DUG-01-01				Colle	ction Date:	08/17	/07 08:15 PM
Lab Order:	0708171					Matrix:	SOIL	
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC Chloride	METHOD - SOIL	582	SW9056 26.3	3 26.3		mg/Kg-dry	5	Analyst: JBC 08/23/07 12:30 PM
PERCENT MOI Percent Moistur	STURE	4.83	D2216 0	0	N	WT%	1	Analyst: TPO 08/22/07 09:40 AM

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank
DF- Dilution Factor
N - Parameter not NELAC certified
See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

ERA Inc. out Creek 2-DUG-01-01 3171				Client	Sample ID: Lab ID:	MW-(07081)7-2-S 71-02
out Creek 2-DUG-01-01 8171				0.11	Lab ID:	07081	71-02
C-DUG-01-01				0.17			
3171				Colle	ction Date:	08/16/	/07 10:45 AM
					Matrix:	SOIL	
	Result	SDL	RL	Qual	Units	DF	Date Analyzed
D - SOIL	591	SW9056 29.1	29.1		mg/Kg-dry	5	Analyst: JBC 08/23/07 05:24 PM
	44.0	D2216					Analyst: TPO
	DD - SOIL	Result DD - SOIL 591 14.8	Result SDL DD - SOIL SW9056 591 29.1 D2216 14.8	Result SDL RL OD - SOIL SW9056 591 29.1 29.1 D2216 14.8 0 0	Result SDL RL Qual OD - SOIL SW9056 591 29.1 29.1 D2216 D2216 N	Result SDL RL Qual Units OD - SOIL SW9056 591 29.1 29.1 mg/Kg-dry D2216 14.8 0 0 N WT%	Result SDL RL Qual Units DF OD - SOIL SW9056 591 29.1 29.1 mg/Kg-dry 5 D2216 14.8 0 0 N WT% 1

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 6

lytical				D	ate:	30-A1	ug-07
INTERA Inc.				Client	Sample ID:	MW-	07-3-S
Dugout Creek					Lab ID:	0708	171-03
RRC-DUG-01-01				Colle	ection Date:	08/15	/07 05:35 PM
0708171					Matrix:	SOIL	•
	Result	SDL	RL	Qual	Units	DF	Date Analyzed
METHOD - SOIL	4860	SW9056 115	115		mg/Kg-dry	20	Analyst: JBC 08/23/07 12:15 PM
STURE ^{re}	15.8	D2216 0	0	N	WT%	1	Analyst: T PO 08/22/07 09:40 AM
	ytical INTERA Inc. Dugout Creek RRC-DUG-01-01 0708171 METHOD - SOIL STURE e	ytical INTERA Inc. Dugout Creek RRC-DUG-01-01 0708171 Result METHOD - SOIL 4860 STURE e 15.8	ytical INTERA Inc. Dugout Creek RRC-DUG-01-01 0708171 Result SDL METHOD - SOIL SW9056 4860 115 STURE D2216 e 15.8	ytical INTERA Inc. Dugout Creek RRC-DUG-01-01 0708171 Result SDL RL METHOD - SOIL SW9056 4860 115 115 STURE D2216 0 e 15.8 0 0	ytical D INTERA Inc. Client Dugout Creek Collect RRC-DUG-01-01 Collect 0708171 Collect METHOD - SOIL SW9056 4860 115 115 STURE D2216 D2216 e 15.8 0 0	ytical Date: INTERA Inc. Client Sample ID: Dugout Creek Lab ID: RRC-DUG-01-01 Collection Date: 0708171 Matrix: Result SDL RL Qual Units METHOD - SOIL SW9056 115 115 mg/Kg-dny STURE D2216 D2216 O N WT%	ytical Date: 30-An INTERA Inc. Client Sample ID: MW- Dugout Creek Lab ID: 0708 RRC-DUG-01-01 Collection Date: 08/15 0708171 Matrix: SOIL Result SDL RL Qual Units DF METHOD - SOIL SW9056 4860 115 115 mg/Kg-dry 20 STURE D2216 e D2216 D21 D21 <th< td=""></th<>

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank
 DF- Dilution Factor
 N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 3 of 6

DHL Ana	lytical				Date:	30-Au	ıg-07
CLIENT:	INTERA Inc.			4	Client Sample ID:	MW-(D7-1
Project:	Dugout Creek				Lab ID:	07081	71-04
Project No:	RRC-DUG-01-01				Collection Date:	08/18/	/07 07:50 AM
Lab Order:	0708171			,	Matrix:	AQUI	BOUS
Analyses		Result	SDL	RL	Qual Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)		****	Analyst: JBC
Bromide		58.0	1.50	5.00	mg/L	5	08/21/07 06:05 PM
Chloride		8840	60.0	200	mg/L	200	08/21/07 05:51 PM
Sulfate		586	5.00	15.0	mg/L	5	08/21/07 06:05 PM
TOTAL DISSO	LVED SOLIDS		M254(oc			Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	19000	10.0	10.0	mg/L	1	08/22/07 09:00 AM

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 6

DHL Ana	lytical				D	ate:	30-Au	g-07
CLIENT:	INTERA Inc.			- 1	Client	Sample ID:	MW-0	7-3
Project:	Dugout Creek					Lab ID:	07081	71-05
Project No:	RRC-DUG-01-01				Colle	ction Date:	08/17/	07 08:05 AM
Lab Order:	0708171					Matrix:	AQUE	COUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC
Bromide		112	15.0	50.0		mg/L	50	08/21/07 06:20 PM
Chloride		38800	300	1000		mg/L	1000	08/21/07 04:51 PM
Sulfate		3760	50.0	150		mg/L	50	08/21/07 06:20 PM
TOTAL DISSO	LVED SOLIDS		M2540	C				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	62800	10.0	10.0		mg/L	1	08/22/07 09:00 AM

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 5 of 6

DHL Ana	lytical				D	ate:	30-Au	g-07
CLIENT:	INTERA Inc.				Client	Sample ID:	MW-0	17-4
Project:	Dugout Creek					Lab D:	07081	71-06
Project No:	RRC-DUG-01-01				Colle	ction Date:	08/16/	07 12:10 PM
Lab Order:	0708171					Matrix:	AQUE	OUS
Analyses		Result	SDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC	METHOD - WATER		E300)				Analyst: JBC
Bromide		114	15.0	50.0		mg/L	50	08/21/07 06:35 PM
Chloride		38700	300	1000		mg/L	1000	08/21/07 05:36 PM
Sulfate		3820	50.0	150		mg/L	50	08/21/07 06:35 PM
TOTAL DISSO	LVED SOLIDS		M2540	oc				Analyst: JBC
Total Dissolved Filterable)	Solids (Residue,	63100	10.0	10.0		mg/L	1	08/22/07 09:00 AM

Qualifiers: ND -

ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank DF- Dilution Factor

N - Parameter not NELAC certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

nui	Analytical	
Uni	Allarytical	

Date: 30-Aug-07

CLIENT	:	INTERA I	nc.			A	NALYT	ICAL	oc si	UMMAI	RYR	EPORT
Work Or Project	der:	0708171	eelt					RunΠ)• I	C2 07082	14	
Sample ID: SampType:	: ICV-070 : ICV	821	Batch ID: Run ID:	R33218 IC2_07082	21A	TestN Analy	lo: E300 vsis Date: 8/21/) 2007 9:48:	53 AM	Units: Prep Date:	mg/L 8/21/2	007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qua
Bromide				50.9	1.00	50.00	0	102	90	110		<u>.</u>
Chloride				25.3	1.00	25.00	0	101	90	110		
Sulfate				76.3	3.00	75.00	0	102	90	110		
Sample ID:	MB-070	321	Batch ID:	R33218		TestN	lo: E300)		Units:	mg/L	
SampType:	: MBLK		Run ID:	IC2_07082	21A	Analy	sis Date: 8/21/	2007 10:06	5:20 AM	Prep Date:	8/21/2	007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qua
Bromide				ND	1.00					*********	**************************************	
Chloride				ND	1.00							
Sulfate				ND	3.00		·		•			
Sample ID:	LCS-070	1821	Batch ID:	R33218		TestN	io: E300)		Units:	mg/L	
SampType:	LCS		Run ID:	IC2_07082	:1A	Analy	sis Date: 8/21/	2007 10:21	:00 AM	Prep Date:	8/21/2	007
Anaiyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Bromide				20.1	1.00	20.00	0	100	90	110		
Chloride				10.0	1.00	10.00	0	100	90	110		
Sulfate				29.8	3.00	30.00	0	99.3	90	110		
Sample ID:	LCSD-0	70821	Batch ID:	R33218		TestN	lo: E 300			Units:	mg/L	
SampType:	LCSD		Run ID:	IC2_07082	1A	Anaiy	sis Date: 8/21/	2007 10:35	:41 AM	Prep Date:	8/21/2	007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Bromide				20.1	1.00	20.00	0	100	90	110	0.0811	20
Chloride				9.99	1.00	10.00	0	99.9	90	110	0.0640	20
Sulfate				29.8	3.00	30.00	0	99.2	90	110	0.109	20
Sample ID:	CCV1-07	0821	Batch ID:	R33218		TestN	o: E300			Units:	mg/L	
SampType:	CCV		Run ID:	IC2_07082	1A	Analy	sis Date: 8/21 /	2007 12:57	:37 PM	Prep Date:	. 8/21/20	007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Bromide				20.0	1.00	20.00	0	100	90	110		
Chloride				10.1	1.00	10.00	0	101	90	110		
Sulfate				29.7	3.00	30.00	0	99.0	90	110		
					•					···· -		
Qualifiers:	В	Analyte detec	ted in the a	ssociated Metl	od Blank	DF	Dilution Factor					
	J	Analyte detec	ted between	MDL and RI	,	MDL	Method Detection	ion Limit			Р	age 1 of 6
	ND	Not Detected	at the Meth	od Detection	Limit	R	RPD outside ac	cepted cont	rol limits			
	RL	Reporting Lin	nit			. S	Spike Recovery	/ outside cor	itrol limits			

N Parameter not NELAC certified

CLIENT: Work Ord Project:	der:	INTERA 0708171 Dugout C	Inc. r cek	*******		AN	ALYT	ICAL (RunI	QC SI	UMMA (C2_07082	RY R 21A	EPORT
Sample ID:	0708174	4-01E MS	Batch ID:	R33218		TestNo:	E30	10		Units:	mg/L	
SampType:	MS		Run ID:	IC2_07	0821A	Analysis	Date: 8/21	1/2007 1:20:	57 PM	Prep Date:	8/21/2	2007
Analyte			5 	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qual
Chloride				131	5.00	50.00	80.24	101	90	110		
Sample ID:	0708174	4-01E MSD	Batch ID:	R33218		TestNo:	E30	0		Units:	mg/L	
SampType:	MSD		Run ID:	IC2_070)821A	Analysis	Date: 8/21	/2007 1:35:	37 PM	Prep Date:	8/21/2	2007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	PDLimit Qual
Chloride				131	5.00	50.00	80.24	102	90	110	0.194	20
Sample ID:	0708174	4-01E MS	Batch ID:	R33218	····	TestNo:	E30	0		Units:	mg/L	
SampType:	MS		Run ID:	IC2_070	0821A	Analysis	Date: 8/21	/2007 1:50:	18 PM	Prep Date:	8/21/2	007
Analyte			·	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD R	PDLimit Qual
Bromide Sulfate				18.6 42.5	1.00 3.00	20.00 30.00	0 .12.33	92.9 101	90 90	110 110		
Sample ID:	0708174	-01E MSD	Batch ID:	R33218		TestNo:	E30	0		Units:	mg/L	
SampType:	MSD		Run ID:	IC2_070	821A	Analysis	Date: 8/21	/2007 2:04:	58 PM	Prep Date:	8/21/2	007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit '	%RPD R	PDLimit Qual
Bromide				18.5	1.00	20.00	0	92.6	90	110	0.254	20
Sulfate				42.5	3.00	30.00	12.33	100	90	110	0.0275	20
Sample ID:	CCV2-0	70821	Batch ID:	R33218		TestNo:	E30	Ď		Units:	mg/L	
SampType:	CCV		Run ID:	IC2_070	821A	Analysis	Date: 8/21	/2007 5:05:	52 PM	Prep Date:	8/21/2	007
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	6RPD R	PDLimit Qual
Bromide				20.6	1.00	20.00	0	103	90	110		
Chloride Sulfate				10.6 30.5	1.00 3.00	10.00 30.00	0 0	106 102	90 90	110 110		
Sample ID [.]	CCV3-07	70821	Batch ID:	P33218		TestNio:	E20/			L loito:	mall	
SampType:	CCV		Run ID:	IC2 070	821A	Analysis	Date: 8/21	, 2007 8:32:4	12 PM	Prep Date:	8/21/2	007
Analyte			· · · · · · · · · · · · · · · · · · ·	Result	RL	SPK value	Ref Val	%REC	l owl imi	t Highl imit 9	KRPD R	PDI imit Orusi
Bromide		1910-1-17		20.2	1 00	20.00		101		110		
Oblasida				10.2	1.00	20.00	0	101	90 90	110		
Chionae					1,00	10.00		1.1.1.		1 1 1 1		

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: Work Order: Project:	INTERA 0708171 Dugout C	Inc. reek			Aľ	VALYT	ICAL (Runli	QC SU	J MMA C2_0708	RY RI 23A	EPORT
Sample ID: MB-269	958	Batch ID:	26958		TestNo	: SW	9056		Units:	mg/Kg	
SampType: MBLK		Run ID:	IC2_070	823A	Analysi	is Date: 8/2 3	3/2007 10:01	1:33 AM	Prep Date	: 8/21/20	107
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD R	PDLimit Qual
Chloride			ND	5.00							
Sample ID: LCS-26	958	Batch ID:	26958		TestNo	: sw	9056		Units:	mg/Kg	
SampType: LCS		Run ID:	IC2_070	323A	Analysi	s Date: 8/23	3/2007 10:10	3:13 AM	Prep Date	8/21/20	107
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	PDLimit Qual
Chloride			50.6	5.00	50.00	· 0	101	80	120		
Sample ID: LCSD-2	26958	Batch ID:	26958		TestNo	: SW	9056		Units:	mg/Kg	· · · · · · · · · · · · · · · · · · ·
SampType: LCSD		Run ID:	IC2_0708	323A	Analysi	s Date: 8/2 3	/2007 10:30	1:54 AM	Prep Date	8/21/20	07
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RF	DLimit Qual
Chloride			50.6	5.00	50.00	0	101	80	120	0.0138	20
Sample ID: 070817	1-01A DUP	Batch ID:	26958		TestNo	: SW	9056		Units:	mg/Kg-	dry
SampType: DUP		Run ID:	IC2_0708	323A	Analysi	s Date: 8/23	/2007 11:16	:56 AM	Prep Date	8/21/20	07
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RF	DLimit Qual
Chloride			536	26.1	. 0	581.7				8.11	25
Sample ID: 070817	1-01A MS	Batch ID:	26958		TestNo:	sws	9056		Units:	mg/Kg-	dry
SampType: MS	•. •	Run ID:	IC2_0708	23A	Analysi	s Date: 8/23	/2007 12:44	:56 PM	Prep Date:	8/21/20	07
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RF	DLimit Qual
Chloride			604	26.3	262.7	349.0	97.1	80	120		
Sample ID: 070817	-01A MSD	Batch ID:	26958		TestNo:	SWS	9056		Units:	mg/Kg-	dry
SampType: MSD		Run ID:	IC2_0708	23A	Analysis	s Date: 8/23	/2007 12:59	:37 PM	Prep Date:	8/21/20	07
Analyte	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RP	DLimit Qual
Chloride			604	26.3	262.7	349.0	97.2	80	120	0.0222	20

в Analyte detected in the associated Method Blank DF Dilution Factor

MDL Method Detection Limit

Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

۰.

J

Ν Parameter not NELAC certified

RPD outside accepted control limits R

S Spike Recovery outside control limits Page 3 of 6

CLIENT: Work Order: Project:	INTERA I 0708171 Dugout Cr	nc. reek			Aľ	VALYT	TICAL RunI	QC S D:	UMMA 1C2_0708	RY REPOR 23A
Sample ID: ICV-0	70823	Batch ID:	R33264		TestNo	: SW	9056		Units:	mg/Kg
SampType: ICV		Run ID:	IC2_070	823A	Analys	is Date: 8/23	3/2007 9:42	:28 AM	Prep Date	8/23/2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Q
Chloride			25.5	5.00	25.00	0	102	90	110	
Sample ID: CCV1	-070823	Batch ID:	R33264		TestNo	: sw	9056		Units:	mg/Kg
SampType: CCV		Run ID:	IC2_070	823A	Analysi	s Date: 8/23	3/2007 1:14	:16 PM	Prep Date	: 8/23/2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit	%RPD RPDLimit Q
Chloride			10.1	5.00	10.00	0	101	90	110	····
Sample ID: CCV3-	070823	Batch ID:	R33264		TestNo	: SW	9056		Units:	mg/Kg
SampType: CCV		Run ID:	IC2_070	823A	Analysi	s Date: 8/23	W2007 5:56:	59 PM	Prep Date	: 8/23/2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Q
Chloride			10.3	5.00	10.00	0	103	90	110	
Sample ID: CCV2-	070823	Batch ID:	R33264		TestNo	: SW9	9056		Units:	mg/Kg
SampType: CCV		Run ID:	IC2_070	823A	Analysi	s Date: 8/23	/2007 4:40:	34 PM	Prep Date	8/23/2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qu
Chloride			10.1	5.00	10.00	0	101	90	110	

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 4 of 6

CLIENT: Work Order: Project:	INTERA 2 0708171 Dugout Ci	Inc. reek			Aľ	ALYT	ICAL (RunI	QC S D:	UMMAI pmoist_(RY F)7082	REPO 1C	RT
Sample ID: 070817 SampType: DUP	'1-03A DUP	Batch ID: Run ID:	PMOIST_ PMOIST_	070821C 070821C	TestNo Analys	: D22 is Date: 8/22	16 /2007 9:40:	00 AM	Units: Prep Date:	WT% 8/21/	, 2007	
Analyte			Result	RĹ	SPK value	Ref Val	%REC	LowLin	nit HighLimit 9	6RPD	RPDLimi	t Qual
Percent Moisture			16.1	0	0	15.75				1.96	30	N
	•	· · ·										

B Analyte detected in the associated Method Blank
 J Analyte detected between MDL and RL

JAnalyte detected between MDL and RLNDNot Detected at the Method Detection Limit

RL Reporting Limit

Qualifiers:

N Parameter not NELAC certified

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 5 of 6

CLIENT: Work Order: Project:	INTERA 0708171 Dugout C	Inc. reek			AN	ALYTI	ICAL RunI	QC S D:	UMMA1 WC_07082	RY I 22D	REPORT
Sample ID: MB-07	0822	Batch ID:	TDS_W-	-08/22/07	TestNo:	M254	10C		Units:	mg/L	-
SampType: MBLK		Run ID:	WC_07(822D	Analysis	Date: 8/22/	2007 9:00	:00 AM	Prep Date:	8/22/	2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit S	%RPD	RPDLimit Qua
Total Dissolved Sol	ids (Residue,	Filtera	ND	10.0						*****	******
Sample ID: LCS-0	70822	Batch ID:	TDS_W-	08/22/07	TestNo:	M254	10C		Units:	mg/L	-
SampType: LCS		Run ID:	WC_070	822D	Analysis	Date: 8/22/2	2007 9:00:	00 AM	Prep Date:	8/22/	2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qual
Total Dissolved Sol	lds (Residue,	Filtera	737	10.0	745.6	0	98.8	70	126	•••	
Sample ID: 07081:	51-01B DUP	Batch ID:	TDS_W-	08/22/07	TestNo:	M254	OC		Units:	mg/L	
SampType: DUP		Run ID:	WC_070	822D	Analysis	Date: 8/22/2	2007 9:00:	00 AM	Prep Date:	8/22/	2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qual
Total Dissolved Soli	ds (Residue,	Filtera	5440	10.0	0	5590				2.63	5
Sample ID: 070817	3-04B DUP	Batch ID:	TDS_W-	08/22/07	TestNo:	M254	00		Units:	mg/L	
SampType: DUP		Run ID:	WC_070	822D	Analysis	Date: 8/22/2	2007 9:00:	00 AM	Prep Date:	8/22/:	2007
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qual
Total Dissolved Soli	ds (Residue,	Filtera	1300	10.0	0	1288				0.542	5
							•				

Analyte detected in the associated Method Blank Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

.· .

В

J

N Parameter not NELAC certified DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Page 6 of 6

DHL Analytical

CLIENT:	INTERA Inc.
Work Order:	0708171
Project:	Dugout Creek

TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Bromide	0.300	1.00
Chloride	0.300	1.00
Sulfate	1.00	3.00
TestNo: SW9056	MDL	MQL
Analyte	mg/Kg	mg/Kg
Chloride	5.00	5.00
TestNo: M2540C	MDL	MQL
Analyte	mg/L	mg/L
Total Dissolved Solids (Residue, Filt	10.0	10.0

MQL SUMMARY REPORT

MQL -Method Quantitation Limit as defined by TRRP MDL -Method Detection Limit as defined by TRRP Appendix D

BMP Evaluation - Crespo Consulting Services, Inc.

Engineering Summary Letter

Dugout Creek

Best Management Practice Development

Prepared for:

INTERA, Inc.

August 30, 2007

Prepared by:

Crespo Consulting Services, Inc. 4131 Spicewood Springs Road, B-2 Austin, TX 78759 Tel: (512) 343-6404 Fax: (512) 343-8120

1. Executive Summary

This scope of this project is to compile known site conditions, evaluate mitigation options, and develop BMPs to address the saltwater contamination at O'Ryan and Pharaoh Seeps and potential impacts to Dugout Creek. Crespo compiled available information for O'Ryan Seep, Pharaoh Seep and Dugout Creek and performed site reconnaissance of the seeps and creek. Based on the available data, the site reconnaissance, and discussions with INTERA staff geologists, Crespo recommends placement of a low-flow diversion at or very near all three of the seeps to capture the seep water before it combines with stormwater and route it to an evaporation pond. In addition, a first-flush stormwater diversion to an evaporation pond is recommended downstream of the O'Ryan Seep. Some additional surveying, engineering, and surface water sampling is required to develop a preliminary engineering plan for these BMPs. Two monitoring stations are recommended on Dugout Creek and one monitoring at the seeps.

2. Previous Studies

The overall Dugout Creek area, monitoring wells, Dugout Creek and its tributaries and seeps are shown in Appendix A. The O'Ryan Seep and Pharaoh Seep areas including seeps, wells, and monitoring wells is shown in Appendix B and Appendix C, respectively.

Pharaoh Seep

Based on INTERA staff observations, Pharaoh Seep appears to flow only after significant rainfall events and stops flowing within a short time (INTERA 2006a). Flow was estimated at approximately 0.5 liters per minute in March 2006, the only flow observed between 2000 and 2006. Subsequent observations by INTERA staff support the intermittent behavior of the seep (INTERA 2006b). Information from Railroad Commission field staff obtained during the June 2007 site visit also supports these observations.

A sample collected by INTERA from the seep contained chloride concentrations of 13,800 mg/L. INTERA concluded that the seep was impacted by produced water from the Saga #2 well (INTERA 2006a). INTERA also concluded that the chloride plume in the Pharaoh Seep area has been flushed down gradient, presumably in the direction of Dugout Creek (INTERA 2006a). INTERA investigations do not conclusively demonstrate that Pharaoh Seep contributes to chloride levels in Dugout Creek at this time (INTERA 2006b).

O'Ryan Seep

Previous studies do not contain historical flow data from O'Ryan Seep. Information from Railroad Commission field staff indicates that O'Ryan Seep flows only after significant rainfall.

One potential source of the chloride is believed to be the Citation 71 injection well. The chloride level in O'Ryan Seep (North) is 1210 mg/L (INTERA 2006c). Chloride concentrations are not available for the O'Ryan South seep.

Dugout Creek

INTERA investigations do not conclusively demonstrate that Pharaoh Seep contributes to chloride levels in Dugout Creek (INTERA 2006b). O'Ryan Seep appears to contribute chloride to the groundwater entering Dugout Creek at the Dugout/O'Ryan confluence. Chloride levels of between 10,200 mg/L and 12,000 mg/L were detected in the segment between the confluence of the O'Ryan Seep and Pharaoh Seep tributaries (INTERA 2006b).

3. Site Visit

A June 2007 site visit by Crespo and INTERA staff took place during a period of above average rainfall for the region and one day after a rainfall of approximately 0.5 inches.

Pharaoh Seep

Observations were made at the SAGA #2 well and Pit #1 site, and several sites where the Pharaoh Seep channel crossed roadways. The actual seep (downstream from the Saga #2 well) was not visited due to access limitations and time constraints. At the Saga #2 site, no surface water was observed, however a very small seep to the south of the main drainage area was observed. The water from this small seep made a small pool and appeared to soak back into the ground, or to evaporate. There was an oily sheen in the water and some surface salt deposition was present in the area. Salt Cedar (Tamarix) shrubs/trees were present in the overall seep drainage area, which was relatively flat and broad.

Standing water was present in the channel at various road crossings downstream from the seep. Little or no flow was observed, and no surface salt deposits were observed downstream from the SAGA #2 well and Pit #1 site. The Pharaoh Seep channel was not distinct at the SAGA #2 well and Pit #1 site, but the channel was visible at the County Road 53 crossing.

At the Dugout Creek/Pharaoh Seep confluence the flow appeared to fan out into a series of small channels. Salt Cedars were present at the SH 821 crossing but not observed at any other downstream crossings.

O'Ryan Seeps

The North and South O'Ryan seeps were located in dense brush and difficult terrain and the actual seeps were not observed. But there was a variety of plant life in the area

that indicated the presence of surface or subsurface water. Salt cedar trees were present in the seep area.

Flow was observed in the vicinity of MW-7 and MW-15, downstream from the seeps. Flow was also observed in a cut in a berm located just upstream from MW-15. Flow was estimated to be approximately 1L/min. Numerous surface salt deposits were observed in the area between MW-15 and MW-7. Salt cedar trees were present in the MW-7 and MW-15 areas. Surface salt deposits were observed in the area near SB-10A and SB-10B as well, although they were not as prevalent as in the MW-15 and MW-7 areas.

The O'Ryan tributary/Dugout Creek confluence is well defined. Little or no flow was observed in Dugout Creek or in the O'Ryan tributary channel at the confluence.

Dugout Creek

Standing water was observed in Dugout Creek, but little to no flow was observed at the locations visited. The only location where flow was observed was at the US81 crossing where a trickle was observed. The Dugout Creek channel width and depth varies widely along the reach visited. Some areas were completely dry. Debris lines from recent storm events were visible in several locations.

4. Conceptual Model

A conceptual model of the O'Ryan Seep and the associated chloride plume was developed by INTERA and Crespo based on the available data and the results of the site visit.

The two O'Ryan seeps are fed by groundwater from a disconnected section of the Ogallala Aquifer. The seep transports the dissolved chlorides to the surface and to the alluvium in the channel formed by surface drainage and the seep. The water table in the area downstream of the O'Ryan Seeps is relatively high and as a result, evapotranspiration by phreatophytes draws the water from the alluvium to the surface where it evaporates forming salt deposits. Surface water from rainfall-runoff events then dissolve the salt deposits and transport the salt downstream toward Dugout Creek in pulses.

Pharaoh Seep is assumed to be the primary source of chlorides in the Pharaoh Seep area. It is assumed that treating the water flowing from the seep will remove most of the chlorides being transported to Dugout Creek.

Flow Estimations

Since there is only one flow estimate (for Pharaoh Seep), several flow estimation methods were utilized to estimate the range in flows at the seeps. Even with these estimates, there is some significant uncertainty in the flows at the seeps.

INTERA provided an estimation of seep flow for the O'Ryan Seep based on generally accepted parameters for the Ogallala aquifer and the limited data available from the monitoring wells in the area.

Based on the groundwater contours upgradient of the seep there is about 3000- to 4000-feet length of aquifer that could be considered to be converging in the direction of the seep. Based on groundwater velocity, the second length dimension is estimated to be:

Groundwater Velocity V = KI/n

Where:

- K = hydraulic conductivity of the Ogallala aquifer (estimated at 10 ft/day)
 I = hydraulic gradient, estimated from the groundwater elevation contours up gradient of the seep at 10ft/500ft = 0.02
 - n = porosity, estimated at 0.2

V = (10 ft/d X 10 ft/500ft)/0.2 = 1 ft/d, or 365 ft/year; or, in one year, the up gradient distance contributing to the seep is 365 ft.

The area contributing recharge to the seep on an annual basis is then 3,000ft X 365ft = 1,095,000 sq ft or 25 acres. The flow rate at the seep by taking a 10 foot thick saturated thickness, the 3,000 ft as the other length dimension in the flow rate calculation:

Flow rate Q = AKI = 3000ft X 10ft X 10ft/d X 0.02ft/d = 6,000 cu ft/d = 44,880 gal/d = 31 gal/min (117 liters/min). The Pharaoh Seep was expected to have similar flow characteristics as the O'Ryan Seep; however, this flow rate estimate is significantly higher than the observed rate of 0.5 Liters/min.

Another method of estimating seep flow is using recharge rates. The recharge rate as a percentage of precipitation can be estimated based on average annual rainfall and recharge estimates in inches per year:

- Precipitation Mitchell/Howard County border = 19 inches/year (Climatic Atlas of Texas, 1983)
- Recharge: Southern High Plains: estimated based on groundwater, 0.4 inches/year (Wood and Sanford, 1995); 0.31 inches/year (Reedy et al., 2003); 0.086 inches/year (USGS RASA model)

Annual recharge estimates as percent of precipitation then range from:

- 0.4 in/19 in = 2.1%
- 0.31 in/19 in = 1.6%
- 0.086 in/19in = 0.45%

For comparative purposes, a range of recharge rates were used to estimate seep flow based on average annual precipitation, recharge rates, and estimated drainage areas. INTERA's recommendation of 25 acres was rounded up to 30 acres to provide a conservative (high) estimate of the contributing area for both O'Ryan and Pharaoh Seeps. A recharge rate of 0.4 inches/year or 2.1% was also used as a conservative (high) estimate to determine a maximum seep flow rate. A recharge rate based on a USGS RASA model recharge rate of 0.086 in/yr (low end of the RASA model) was used to calculate the expected low end flow rate (TWDBb). The results were compared to the observed discharge rate estimate at Pharaoh Seep of 0.5 L/min. It was assumed that the combined O'Ryan North and South seeps had approximately the same flow rate as Pharaoh Seep. Results of this calculation are shown in Appendix F for O'Ryan Seep and Appendix G for Pharaoh Seep. A summary of flow rate calculations is provided in Table 1.

Estimated Seep Flow Rate (Various Methods)								
	O'Ry	an Seep	Pharaoh Seep					
Methods	Liters/min	Gallons/min	Liters/min	Gallons/min				
Observed	Х	Х	0.50	0.13				
Recharge Rate (low)	0.50	0.13	0.47	0.12				
Recharge Rate (high)	2.37	0.63	2.19	0.6				
Ground Water Velocity	117	31	х	х				

Table 1. Estimated Seep Flow Rates

These estimates are provided to illustrate the range of flows to be managed and the degree of uncertainty in the flow estimates. The recharge rate methods appear to approximate more closely the observed seep flow since these flows were utilized in the BMP sizing.

5. Proposed Corrective Actions and Monitoring

Rather than attempting to build a single BMP to treat the entire area, the strategy of utilizing two types of BMPs separates the capture of the low flow seep water and the higher flow rain/runoff water allowing more effective BMPs to be designed for the different flow regimes. Based on the observations and calculations, a proposed general strategy of capturing the surface runoff at Pharaoh and O'Ryan tributaries by:

- Intercepting the seep water and storing it as close to the source as possible. This
 will require later disposal or evaporation. The reduced transport of additional salt
 into the area will prevent the formation of surface salt deposits in the drainage area
 downstream from the seep.
- 2) Placing a BMP downstream of the surface salt deposits to catch first flush (salt runoff) to store and treat (O'Ryan Seep only).

Specific BMP Recommendations

The BMPs in Table 2 were considered for use in the O'Ryan and Pharaoh Seep areas.

ВМР Туре	Comment
Dry Extended Detention	Not effective for dissolved constituent removal
Extended Detention with Marsh	Not suited for dry areas
Wet Extended Detention	Not suited for dry areas
Wet Pond	Not suited for dry areas
Water Quality Inlet	Not effective for dissolved constituent removal
Grassed Swale	Not effective for dissolved constituent removal
Vegetative Filter Strip	Not effective for dissolved constituent removal
Shallow Marsh	Not suited for dry areas
Sand Filtration Basins	Not effective for dissolved constituent removal
Retention Irrigation systems	Not effective for dissolved constituent removal
Porous Pavement	Not applicable
Infiltration Trench	Not effective for dissolved chloride removal
Infiltration Basin	Not effective for dissolved chloride removal
Storage and Disposal	Alternate Recommendation
Storage and Evaporation	Recommended

Table 2. BMP designs considered (Schueler 1987, LCRA 2007)

Most of the BMPs listed above are effective at removing suspended solids and particulates but are not effective at removing dissolved constituents. They are designed to treat the captured water and release it back into the drainage system. In the O'Ryan and Pharaoh systems the dissolved solids, in this case the chlorides would pass through these types of BMPs. Wet Ponds and other BMPs that utilize permanent water volumes are not practical for areas with low rainfall and high evaporation rates.

The infiltration BMPs typically involve return of the captured water into the groundwater system. In the case of the O'Ryan and Pharaoh Seeps, infiltration techniques would return most of the dissolved chlorides into the alluvium.

The two BMPs considered to be most effective are the Storage and Disposal, and the Storage and Evaporation BMPs. The Storage and Evaporation BMP is recommended

because of its effectiveness at removing salts and its lower cost compared to the Storage and Disposal BMP.

O'Ryan Seep - Low Flow Seep BMP.

The recommended BMP is a sump and evaporation pond for both the O'Ryan north and the O'Ryan south seeps. The evaporation ponds should be located above the O'Ryan seep channel. The sumps should be located as close to each seep as possible (see Appendix D). The sumps are sized to capture 1-day of the maximum estimated flow (60 cf), or approximately 4.5 days of the minimum flow. The sumps are used to isolate the seep flow from surface runoff, collect the seep water and pump it to either a holding tank or an evaporation pond. Based on the flow estimates (Appendix F), the sumps should be 3-feet high with a diameter of 5-feet. Sump sizing is shown in Table 3.

O'Ryan Sump Sizing								
Minimum Size								
	Volume	height	diameter					
	(cf)	(ft)	(ft)					
1 day	13	3	2.33					
2 day	25.7	3	3.30					
1 week	89.8	3	6.18					
	Maximum	n Size						
	Volume	height	diameter					
	(cf)	(ft)	(ft)					
1 day	60	3	5.05					
2 day	120.4	3	7.15					
1 week	421.4	3	13.37					

Table 3. O'Ryan Seep Low Flow BMP Sump Sizing

The water collected in the sump is pumped to a 60-ft x 60-ft evaporation pond with a depth of 1-ft as shown in Table 4. The evaporation pond was sized using the calculated minimum and maximum flow rates and average precipitation and evaporation data (TWDBb). The evaporation pond should be lined with a corrosion and contamination resistant liner due to the high chloride levels in the seep water. Based on USGS rainfall depth-duration frequency data, the pond will hold one month's maximum seep flow plus the precipitation from the 25-year precipitation event (approximately 6-inches).

O'Ryan Se	ер		m	ax	min		
			1,831	cf/month	390 cf/month		
Month	Mean	Mean	Max		Min		
	Precip (in)	Evap (in)	Inflow (in)	Level (in)	Inflow (in)	Level (in)	
Jan	0.92	2.67	0.51	0.00	0.11	0.00	
Feb	0.98	3.18	0.51	0.00	0.11	0.00	
Mar	1.15	5.36	0.51	0.00	0.11	0.00	
Apr	1.6	6.7	0.51	0.00	0.11	0.00	
May	2.9	6.79	0.51	0.00	0.11	0.00	
Jun	2.52	8.33	0.51	0.00	0.11	0.00	
Jul	2.16	9.38	0.51	0.00	0.11	0.00	
Aug	2.07	8.36	0.51	0.00	0.11	0.00	
Sep	2.69	6.5	0.51	0.00	0.11	0.00	
Oct	2.05	5.19	0.51	0.00	0.11	0.00	
Nov	1.15	3.73	0.51	0.00	0.11	0.00	
Dec	1.05	2.83	0.51	0.00	0.11	0.00	
Total	21.24	69.02	6.10		1.30		
Evaporatio	n Pond Dime	ensions		Holding Tan	k		
depth	1	ft	•	One Month	Capacity (m	ax flow rat	
length	60	ft	•	55,698	cf		
width	60	ft		416,646	gallons		
Volume	3,600	cubic feet					
				4.7	months at i	min flow ra	
0.51	max require	ed depth fro	om seep flov	v			
0.11	min require	d depth fro	n seep flow				

Table 4. O'Ryan Seep evaporation pond and holding tank sizing

A 55,698-cf (416,646 gallon) capacity tank would hold the one-month maximum flow and would require pumping and transport every month. If the minimum seep flow occurs, a much smaller holding tank would be required. The size of available holding tanks and tanker truck capacities suggests an evaporation pond approach would be more cost effective if the maximum seep flow estimate is accurate.

Based on chloride concentration level of 1210 mg/L and the minimum and maximum estimated flow rates, each evaporation pond will collect from 708-lbs to 3,320-lbs of salt per year (see Appendix F).

Based on site conditions, the following alternative designs could be considered for the low flow seep BMP.

- Construct a single evaporation pond for the combined flow from both seeps.
- Construct a single holding tank
- Construct a single pond downstream from confluence of two seeps

O'Ryan Seep – First-Flush BMP

The recommended BMP is to divert the first 0.1 inches of runoff from the area downstream of the seeps and downstream of the area where the surface salt deposits are located. The drainage area is approximately 200 acres. The approximate location of this BMP is shown in Appendix D.

The BMP is designed to divert the first-flush of runoff that contains the highest load of chloride dissolved from the surface salt deposits and minor seeps. The surface salt deposits are located far enough downstream from the seeps that several additional tributaries are part of the drainage area at the proposed BMP location. The 200 acre drainage area does not include the relatively flat area above the escarpment. Runoff from this flat area will not reach the area of surface salt deposits until the deposits have already been dissolved and transported to the BMP.

The first flush BMP is relatively large due to the increased drainage area. Based on annual rainfall and infiltration rates it is assumed that approximately 1-inch runoff per year flows over the drainage area. The proposed first-flush BMP will capture half of the annual runoff volume with an assumed chloride concentration of 1210 mg/l (the same as the chloride concentration at the O'Ryan seep). Since the chlorides are dissolved easily, only a small depth of capture is required. Table 5 provides an estimated BMP sizing for the first flush BMP.

able 5. First-Flush bivip sizing							
Drainage Area	l i i i i i i i i i i i i i i i i i i i						
Drainage Area (acres)	200.0						
DA (sf)	8,712,000						
capture (inches)	0.1						
Pond Volume (cf)	72,600						
Capture Volume Size							
height (ft)	1						
length (ft)	270						
width (ft)	270						
total volume (cf)	72,900						
Chloride Captur	ed						
Concentration (mg/L)	1210						
Captured per storm (lbs)	6.8						
# storms/year	10						
Capture per year (lbs)	68.4						

Table 5 First Flush PMD Sizing

Due to the high concentrations of chloride in the runoff it is assumed that the BMP will need to be sized as an evaporation pond. The evaporation pond should be lined with a corrosion resistant liner due to the high chloride levels in the seep water.

Prior to beginning the detailed design and implementation of the recommended BMPs, additional data will be required as outlined below:

- 1. Measure the precipitation and flow rate at each seep to validate the flow rate estimates used to size the BMPs. The flow rates at each seep should be measured after significant rainfall events.
- 2. Measure the chloride concentration and conductivity at each seep to establish the chloride concentration and the correlation between chloride concentration and conductivity. Once the correlation is established, ongoing conductivity measurements can be used to monitor BMP performance.
- 3. Measure the precipitation and flow rate at the proposed location of the first-flush BMP after a significant rainfall event.
- 4. Measure the chloride concentration and conductivity at the proposed first-flush BMP location to establish the chloride concentration and the correlation between chloride concentration and conductivity.
- 5. Develop a more refined precipitation/evaporation runoff model in order to size the BMPs accurately.
- 6. Perform a topographic survey of the seep areas and the proposed BMP locations to accurately determine the final BMP placement.
- 7. Perform a geotechnical survey of the proposed BMP locations. The survey will identify local geologic features that could impact the pond location and design.
- 8. Develop a preliminary BMP design, including the specification for the flow containment/liners to be used in the BMPs
- 9. Develop a cost estimate for the proposed BMPS
- 10. Develop sampling plans to monitor the performance of the BMPs. The sampling plan includes periodic samples from the seeps, as well as samples downstream of the seeps near proposed location of the first-flush BMP.

Pharaoh Seep – Low-Flow Seep BMP.

A sump and evaporation pond are recommended for the Pharaoh seep. The evaporation pond should be located above the Pharaoh Seep channel. The sump should be located as close to the seep as possible (see Appendix B). The sump is sized to capture 1-day of the maximum estimated flow (120 cfs), or approximately 4.5 days of the minimum flow. The sump will be used to isolate the seep flow from surface runoff, collect the seep water and pump it to either a holding tank or an evaporation pond. Based on the flow estimates (Appendix G), the sump should be 3-feet high with a diameter of 7.2-feet. Sump sizing is shown in Table 6.

Sump Sizing								
	Minimum Size							
	Volume height diameter							
	(cf)	(ft)	(ft)					
1 day	26	3	3.30					
2 day	51.3	3	4.67					
1 week	179.7	3	8.73					
	Maximum	Size						
	Volume	height	diameter					
	(cf)	(ft)	(ft)					
1 day	120	3	7.15					
2 day	240.8	3	10.11					
1 week	842.8	3	18.91					

Table 6. Pharaoh Seep Low Flow BMP Sump Sizing

The water collected in the sump is pumped to an 85-ft x 85-ft evaporation pond with a depth of 1-ft as shown in Table 7. The evaporation pond was sized using the calculated minimum and maximum flow rates, and average precipitation and evaporation data (TWDBb). The evaporation pond should be lined with a corrosion and contamination resistant liner due to the high chloride levels in the seep water. Based on USGS rainfall depth-duration frequency data, the pond will hold one month's maximum seep flow plus the precipitation from the 25-year precipitation event (approximately 6-inches).

Month	Mean Mean		Мах		Min	
WORth	Precip (in)	Evan (in)	Inflow (in)	Level (in)	Inflow (in)	Level (in)
Jan	0.92	2.67	0.51	0.00	0.11	0.00
Feb	0.98	3.18	0.51	0.00	0.11	0.00
Mar	1.15	5.36	0.51	0.00	0.11	0.00
Apr	1.6	6.7	0.51	0.00	0.11	0.00
May	2.9	6.79	0.51	0.00	0.11	0.00
Jun	2.52	8.33	0.51	0.00	0.11	0.00
Jul	2.16	9.38	0.51	0.00	0.11	0.00
Aug	2.07	8.36	0.51	0.00	0.11	0.00
Sep	2.69	6.5	0.51	0.00	0.11	0.00
Oct	2.05	5.19	0.51	0.00	0.11	0.00
Nov	1.15	3.73	0.51	0.00	0.11	0.00
Dec	1.05	2.83	0.51	0.00	0.11	0.00
Total	21.24	69.02	6.10		1.30	
Evaporatio	n Pond Dim	ensions				
depth	1	ft	Holding Tank			
length	85	ft		One Month Capacity (max flow rate		
width	85	ft	-	111,395	cf	
Volume	7,225 cubic feet		833,292 gallons			
	54,047 gallons			4.7 months at min flow rat		

Table 7. Pharaoh Seep Evaporation pond and holding tank sizing

An 111,395-cf (833,292 gallon) capacity tank would hold the one-month maximum flow and would require pumping and transport every month. If the minimum seep flow occurs, a much smaller holding tank would be required. The size of available holding tanks and tanker truck capacities suggests an evaporation pond approach would be more cost effective if the maximum seep flow estimate is accurate.

Based on chloride concentration level of 13,800 mg/L and the minimum and maximum estimated flow rates, each evaporation pond will collect from 8,072-lbs to 37,862-lbs of salt per year (Appendix G).

No data exists, and no observations were made confirming the presence of salt deposits downstream from the Pharaoh Seep. Preliminary data suggests that if present, surface and subsurface salt deposits may be similar to those observed downstream from the O' Ryan Seeps. If additional seeps and/or surface and subsurface salt deposits are present downstream from Pharaoh Seep, a first-flush BMP similar to that recommended for the O'Ryan Seeps could be developed for Pharaoh Seep at a later time.

Prior to beginning the detailed design and implementation of the recommended BMPs, additional data will be required as outlined below:

- 1. Measure the flow rate at the seep to validate the flow rate estimates used to size the BMPs. The flow rates at the seep should be measured after significant rainfall events.
- Measure the chloride concentration and conductivity at the seep to establish the chloride concentration and the correlation between chloride concentration and conductivity. Once the correlation is established, ongoing conductivity measurements can be used to monitor BMP performance.
- 3. Develop a more refined precipitation/evaporation runoff model in order to size the BMPs accurately.
- 4. Perform a topographic survey of the seep area to accurately determine the final BMP locations.
- 5. Perform a geotechnical survey of the proposed BMP locations. The survey will identify local geologic features that could impact the pond location and design.
- 6. Develop a preliminary BMP design, including the specification for the flow containment/liners to be used in the BMP.
- 7. Develop a cost estimate for the proposed BMP.
- 8. Develop sampling plans to monitor the performance of the BMP by performing periodic sampling of the seep.

6. Proposed Permanent Monitoring Stations

In order to establish baseline surface water flows and conductivity measurements, as well as to monitor the effectiveness of the proposed BMPs, four permanent monitoring stations are recommended. A sufficient number of chloride samples at each seep should be taken to correlate chloride concentrations with conductivity. Flow and conductivity measurements at the following locations are recommended.

- 1. MS-1: Dugout Creek, upstream from the O'Ryan Seep tributary/Dugout Creek confluence. Monitoring data at this location will establish a baseline for flow and chlorides entering the O'Ryan/Pharaoh/Dugout Creek area.
- 2. MS-2: O'Ryan Creek tributary, slightly upstream from the O'Ryan Seep tributary/Dugout Creek confluence. Monitoring this location will provide data on the current flow and chloride levels entering Dugout Creek from the O'Ryan Seep tributary.
- 3. MS-3: Dugout Creek, downstream from the Pharaoh Seep tributary/Dugout Creek confluence. Monitoring this location will provide flow and chloride concentrations leaving the O'Ryan/Pharaoh/Dugout Creek area.
- 4. Annual conductivity measurements at each seep to monitor flow and chloride concentrations.

The proposed permanent monitoring station locations are shown in Appendix E.

7. References

INTERA 2006a. Second Supplemental Investigation Report for the Pharaoh Seep Investigation, Coahoma, Texas. August 2006.

INTERA 2006b. Environmental Assessment of Dugout Creek, Howard and Mitchell Counties, Texas. August 2006.

INTERA 2006c. Third Supplemental Investigation Report for the O'Ryan Seep Investigation, Coahoma, Texas. August 2006.

LCRA, Highland Lakes Watershed Ordinance, Water Quality Management Technical Manual, Fifth Edition, July 1, 2007.

Schueler, Thomas. Controlling Urban Runoff: A practical Manual for Planning and Designing Urban BMPs. Washington Metropolitan Water Resources Planning Board, July 1987.

TWDB1, Texas Water Development Board, Groundwater Availability of the Southern Ogallala Aquifer in Texas and New Mexico: Numerical Simulations Through 2050, <u>http://www.twdb.state.tx.us/gam/GAM_documents/documents.htm</u>, February 2003.

TWDB2, Texas Water Development Board, Evaporation/Precipitation Data for Texas, accessed August 2007, <u>http://hyper20.twdb.state.tx.us/Evaporation/evap.html</u>

Appendix A

Dugout Creek Area Map (INTERA 2006b)

Appendix B

O'Ryan Seep Area Map (INTERA 2006c)

Appendix C

Pharaoh Seep Area Map (INTERA 2006a)

Appendix D

Dugout Creek – Proposed BMP Locations
Appendix E

Dugout Creek – Proposed Permanent Monitoring Stations

Appendix F. O'Ryan Seep Flow Calculations

O'Ryan Seeps (North or South)

Chloride level (mg/l)

1,210 based on groundwater concentration near seeps

Date modified: 8/30/07

Minimum flow estimation based on contributing aquifer area and recharge rate from USGS RASA Model

Aquifer DA (acres)	30.0				
DA (sf)	1,306,800				
Avg annual rainfall (in)	21.24				
Recharge Rate (in/year)	0.086	recharge rat	e from USGS RASA Model		
% to seep	0.405%				
Seep Flow		units	units	units	units
_	9,370	cf/year	265,329 Liters/year	70,092 gal/year	321,047,511 mg chloride/year
	781 (cf/month	22,111 Liters/month	5,841 gal/month	321 kg chloride/year
	26 (cf/day	727 Liters/day	192 gal/day	708 lbs chloride/year
	0.018	cf/min	0.50 Liters/min	0.13 gal/min	
	0.00030	cfs	0.008 Liters/sec	0.002 gal/sec	

Maximum flow estimation based on contributing aquifer area and recharge rate from INTERA

Aquifer DA (acres)	30.0				
DA (sf)	1,306,800				
Avg annual rainfall (in)	21.24				
Recharge Rate (in/year)	0.404	recharge ra	te from INTERA calculations		
% to seep	1.900%				
Seep Flow		units	units	units	units
	43,948 (cf/year	1,244,483 Liters/year	328,758 gal/year	1,505,824,818 mg chloride/year
	3,662 (cf/month	103,707 Liters/month	27,396 gal/month	1,506 kg chloride/year
	120 (cf/day	3,410 Liters/day	901 gal/day	3,320 lbs chloride/year
	0.084 (cf/min	2.37 Liters/min	0.63 gal/min	
	0.00139 (cfs	0.039 Liters/sec	0.010 gal/sec	

Flow estimation based on observed flow at Pharaoh seep (0.5 L/min), assumes O'Ryan North and South flow equals Pharaoh flow (double observed flow rate to get maximum)

	······································					
cf/year	10,054	Liters/year	284,700	gal/yr	75,210	344,487,000 mg chloride/year
cf/month	838	Liters/month	23725	gal/month	6267	344 kg chloride/year
cf/day	28	Liters/day	780	gal/day	206	759 lbs chloride/year
cf/min	0.019	Liters/min	0.50	gal/min	0.13	
cfs	0.00032	L/s	0.008	gal/s	0.002	

Appendix G. Pharaoh Seep Flow Calculations

Pharaoh Seep Date modified: 8/14/07 Chloride level (mg/l) 13,800 Minumun flow estimation based on contributing aguifer area and recharge rate from USGS RASA Model

Initialitati nen eetimate	i bacca ell'e	entillødding a	quiller aloa ana reena ge rate n		
Aquifer DA (acres)	30.0				
DA (sf)	1,306,800				
Avg annual rainfall (in)	21.24				
Recharge Rate (in/year)	0.086	recharge ra	te from USGS RASA Model		
% to seep	0.405%				
Seep Flow					
	9,370 (cf/year	265,329 Liters/year	70,092 gal/yr	
	781 (cf/month	22,111 Liters/month	5,841 gal/month	3,661,533,593 mg chloride/year
	26 0	cf/day	727 Liters/day	192 gal/day	3,662 kg chloride/year
	0.018 (cf/min	0.47 Liters/min	0.12 gal/min	8,072 lbs chloride/year
	0.000 0	cfs	0.01 L/sec	0.002 gal/sec	

Maximum flow estimation based on contributing aquifer area and recharge rate from INTERA

			-			
Aquifer DA (acres)	30.0					
DA (sf)	1,306,800					
Avg annual rainfall (in)	21.24					
Recharge Rate (in/year)	0.404	recharge rate from INTERA	calculations			
% to seep	1.9%					
Seep Flow						
cf/year	43,948	Liters/year	1,244,483	gal/yr	328,758	
cf/month	3,662	Liters/month	103,707	gal/month	3,945,093	17,173,869,831 mg chloride/year
cf/day	120	Liters/day	3,410	gal/day	901	17,174 kg chloride/year
cf/min	0.084	Liters/min	2.19	gal/min	0.58	37,862 lbs chloride/year
cfs	0.001	L/s	0.04	gal/s	0.010	

Flow estimation based on observed flow rate at seep (0.5 L/min) (assumes may flow rate is double the observed flow rate)

(assumes max now rate is double the observed now rate)								
cf/year	20,108	Liters/year	569,400	gal/yr	150,420			
cf/month	1,676	Liters/month	47,450	gal/month	12,535	7,857,720,000 mg chloride/year		
cf/day	55	Liters/day	1,560	gal/day	412	7,858 kg chloride/year		
cf/min	0.038	Liters/min	1.00	gal/min	0.26	17,323 lbs chloride/year		
cfs	0.00064	L/s	0.017	gal/s	0.004			